翻訳と辞書
Words near each other
・ Oskar Edøy
・ Oskar Ekberg
・ Oskar Engelhard von Löwis of Menar
・ Oskar Enkvist
・ Osip Mandelstam
・ Osip Mikhailovich Lerner
・ Osip Minor
・ Osip Notovich
・ Osip Petrov
・ Osip Piatnitsky
・ Osip Senkovsky
・ Osip Startsev
・ Osip Yermansky
・ Osipaonica
・ Osipenko
Osipkov–Merritt model
・ Osipov
・ Osipov State Russian Folk Orchestra
・ Osipy-Kolonia
・ Osipy-Lepertowizna
・ Osipy-Wydziory Drugie
・ Osipy-Wydziory Pierwsze
・ Osipy-Zakrzewizna
・ OSiR Skałka
・ OSiR Stadium in Olsztyn
・ OSiR Stadium in Słubice
・ Osira
・ Osire
・ Osireion
・ Osiriaca ptousalis


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Osipkov–Merritt model : ウィキペディア英語版
Osipkov–Merritt model

Osipkov–Merritt models (named for Leonid Osipkov and David Merritt) are mathematical representations of spherical stellar systems (galaxies, star clusters, globular clusters etc.). The Osipkov-Merritt formula generates a one-parameter family of phase-space distribution functions that reproduce a specified density profile (representing stars) in a specified gravitational potential (in which the stars move). The density and potential need not be self-consistently related.
A free parameter adjusts the degree of velocity anisotropy, from isotropic to completely radial motions. The method is a generalization of Eddington's formulaEddington, A. (1916), ( The distribution of stars in globular clusters, ) ''Mon. Not. R. Astron. Soc.'', 76, 572〕 for constructing isotropic spherical models.
The method was derived independently by its two eponymous discoverers.〔Osipkov, L. P. (1979), ( Spherical systems of gravitating bodies with an ellipsoidal velocity distribution, ) ''Pis'ma v Astron. Zhur.'', 5, 77〕〔Merritt, D. (1985), ( Spherical stellar systems with spheroidal velocity distributions, ) ''Astron. J.'', 90, 1027〕 The latter derivation includes two additional families of models (Type IIa, b) with tangentially anisotropic motions.
==Derivation==

According to Jeans's theorem, the phase-space density of stars ''f'' must be expressible in terms of the isolating integrals of motion, which in a spherical stellar system are the energy ''E'' and the angular momentum ''J''. The Osipkov-Merritt ''ansatz'' is
:f = f(Q) = f(E+J^2/2r_a^2)
where ''ra'', the "anisotropy radius", is a free parameter. This ''ansatz'' implies that ''f'' is constant on spheroids in velocity space since
:
2Q = v_r^2 + (1+r^2/r_a^2)v_t^2 + 2\Phi(r)

where ''v''r, ''v''t are velocity components parallel and perpendicular to the radius vector ''r'' and Φ(''r'') is the gravitational potential.
The density ''ρ'' is the integral over velocities of ''f'':
:
\rho(r) = 2\pi\int\int f(E,J) v_t dv_t dv_r

which can be written
:
\rho(r) = \int_\Phi^0 dQ f(Q) \int_0^ dJ^2\left()^

or
:
\rho(r) = \int_\Phi^0 dQ \sqrtf(Q).

This equation has the form of an Abel integral equation and can be inverted to give ''f'' in terms of ''ρ'':
:
f(Q) = \int_Q^0 ,\ \ \ \ \ \rho^'(\Phi) = \left()\rho\left().


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Osipkov–Merritt model」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.